Exponential Quadrature Rules Without Order Reduction for Integrating Linear Initial Boundary Value Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Avoiding order reduction when integrating diffusion-reaction boundary value problems with exponential splitting methods

In this paper, we suggest a technique to avoid order reduction in time when integrating reaction-diffusion boundary value problems under non-homogeneous boundary conditions with exponential splitting methods. More precisely, we consider Lie-Trotter and Strang splitting methods and Dirichlet, Neumann and Robin boundary conditions. Beginning from an abstract framework in Banach spaces, a thorough...

متن کامل

Avoiding the order reduction of Runge-Kutta methods for linear initial boundary value problems

A new strategy to avoid the order reduction of Runge-Kutta methods when integrating linear, autonomous, nonhomogeneous initial boundary value problems is presented. The solution is decomposed into two parts. One of them can be computed directly in terms of the data and the other satisfies an initial value problem without any order reduction. A numerical illustration is given. This idea applies ...

متن کامل

Initial value problems for second order hybrid fuzzy differential equations

Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia

متن کامل

Second order abstract initial - boundary value problems

Introduction Partial differential equations on bounded domains of R n have traditionally been equipped with homogeneous boundary conditions (usually Dirichlet, Neumann, or Robin). However, other kinds of boundary conditions can also be considered, and for a number of concrete application it seems that dynamic (i.e., time-dependent) boundary conditions are the right ones. Motivated by physical p...

متن کامل

SOME BOUNDARY VALUE PROBLEMS FOR A NON-LINEAR THIRD ORDER O.D.E.

Existence of periodic solutions for non-linear third order autonomous differential equation (O.D.E.) has not been investigated to as large an extent as non-linear second order. The popular Poincare-Bendixon theorem applicable to second order equation is not valid for third order equation (see [3]). This conclusion opens a way for further investigation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2018

ISSN: 0036-1429,1095-7170

DOI: 10.1137/17m1124279